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a b s t r a c t 

This paper proposes several frameworks to estimate the appropriate default correlations 

for structured products, each of which jointly considers the role of co-movements in mod- 

eled risk characteristics and unmodeled systematic risk, or ‘frailty.’ We contrast our esti- 

mates with credit rating agencies’ default correlation assumptions, which were only 0.01 

for Collateralized Loan Obligations (CLOs) pre-crisis and have increased to 0.03 post-crisis. 

In contrast, the joint consideration of observable risk factors and frailty leads to substan- 

tially higher estimates of 0.12. We show that this translates into CLOs with credit risk 

understated by 26%, suggesting caution for the post-crisis structured finance market. 

© 2017 Elsevier B.V. All rights reserved. 
1. Introduction 

During the financial crisis, over 13,250 AAA-rated 

tranches with an issuance value of $1.26 trillion conse- 
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quently defaulted on their claims. 1 A commonly perceived 

force of this activity is that actors did not understand the 

highly correlated nature of Mortgage Backed Securities 

(MBS), Collateralized Debt Obligations (CDO), and other 

structured finance collateral’s default risk. A Financial 

Times article concisely summarizes: “Simply stated, what 

was supposed to be correlated in a certain way turned 

out to be correlated in a completely different fashion.”2 

Federal Reserve Chairman Ben Bernanke told the Financial 

Crisis Inquiry Committee, “They did not take into account 

the appropriate correlation between [and] across the cat- 

egories of mortgages.”3 Despite the level of attention paid 

to default correlations, the discussion remains qualitative 

in nature. No work has quantified what exact default 
1 Our calculation is based on data pulled from Bloomberg on the uni- 

verse of 2,350 structured products issued between January 20 0 0 and De- 

cember 2007 that defaulted between January 2008 and May 2014. 
2 Pablo Triana, July 26, 2010, Financial Times . 
3 Financial Crisis Inquiry Commission ( 2010 , p.149) 
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correlations were assumed by rating agencies prior to

2007 and to what extent these estimates have been up-

dated in the wake of the financial crisis—an important

question given the revival of the structured finance market

with over $3.10 trillion in securities issuance between

January 2010 and June 2015. 4 

Our first objective is to obtain a sense of what pre-

crisis correlations were. To examine this question, we back

out default correlation estimates from pre-crisis rating

agency data. We build several intuitive methodologies to

derive default correlation estimates across a set of model-

ing frameworks. We then compare these estimates to those

used by rating agencies for what industry sometimes refers

to as ‘2.0’ (or post-crisis) structured products. 

The infrequent nature of default events makes it dif-

ficult to model their underlying correlated nature. Addi-

tionally, an important unmodeled or omitted variable can

emerge and cause a wave of defaults at a particular point

in time. Taleb (2007) popularized one narrative of this con-

cept known as the ‘black swan event’ where previously

unforeseen events cause chaos on bank risk models and

lead to a crisis. More importantly, Duffie, Eckner, Horel and

Saita (2009) propose a method to capture the tail loss risk

associated with an unmodeled systematic risk factor. Even

after controlling for a broad spectrum of firm-specific and

macro-explanatory variables, they find that an unobserv-

able time-varying factor referred to as ‘frailty’ can signif-

icantly help in explaining default clustering. They discuss

the potential importance of frailty for portfolios of assets,

such as those found in a CDO, but they do not show how

it can be incorporated into default correlations, nor com-

pare this to estimates currently used in practice. Our paper

is the first to detail an approach to incorporate the effects

of both frailty as well as the co-movement of observable

risk characteristics into an estimate of default correlations.

We document the default correlations assumed by the rat-

ing agencies, contrast their assumption with our estimates,

and quantify the effects of our frailty-incorporated default

correlation estimates on the appropriate size of actual se-

nior AAA-rated CDO tranches. 

The traditional theoretical literature focuses on the cor-

relation in default intensities of assets. 5 In contrast, our

study examines the correlation in the realization of de-

faults between assets. While the modeling of correlations

among default intensities has clean mathematical proper-

ties, it is conceptually difficult to map such default inten-

sity correlations to actual defaults. Ultimately, the credit-

worthiness of a structured finance product is dictated by

the realized defaults of its underlying collateral pool. For

this reason, practitioners primarily focus on the correla-

tion of realized defaults. Credit rating agencies specifically

mention a concern for achieving the appropriate correla-

tion of realized defaults ( Moody’s, 2010 ) and base their fi-
4 Issuances are from the Securities Industry and Financial Markets As- 

sociation reports (SIFMA) from 2010 through the second quarter of 2015. 

These totals are estimates and may be missing smaller categories. 
5 For example, see Azizpour, Giesecke and Kim (2011) , Das, Duffie, Ka- 

padia and Saita (2007) , Giesecke (2004) , Giesecke and Weber (2004) , 

Koopman, Lucas and Schwaab (2012) , Lando and Nielsen (2010) , and Li 

(1999) , among others. 

 

 

 

 

 

 

 

nal metrics of both collateral correlation and collateral risk

on the distribution of realized asset defaults ( Standard &

Poor’s, 2013 ). Thus, by estimating default correlations from

realized defaults, we are able to directly compare the op-

erating assumptions of rating agencies to estimates of joint

collateral risk under our framework. 

As a benchmark for common practice, we begin by ask-

ing what correlation levels were assumed by rating agen-

cies for structured finance products leading up to the fi-

nancial crisis. We back out default correlations from rating

agency data and find that Standard and Poor’s (S&P) and

Moody’s assumed an average default correlation from 1997

to 2007 of 0.01. To provide some economic context for the

relevance of default correlations for CDOs, we show that a

change in default correlation from 0.005 to 0.035 leads to

approximately a 10% increase in the proportion of subordi-

nated tranches needed to protect the claim of a senior AAA

tranche. 

Given the importance of default correlations, we use

multiple distinct methodologies, each of which is based on

systematic changes in both observable and unobservable

risk factors, to estimate their appropriate level. The first

class of models we consider is based on clustering in credit

rating upgrades and downgrades using different charac-

terizations of a state-dependent rating transition matrix.

Ashcraft, Goldsmith-Pinkham and Vickery (2010) show that

there is variation in performance beyond initial credit rat-

ings based on other observable risk characteristics. In a

similar manner, we also consider a second class of models

which evaluates the importance of a panel of macroeco-

nomic variables in explaining default risk. For each model,

we then incorporate unobservable systematic changes in

default risk, or ‘frailty,’ utilizing the framework of Duffie,

Eckner, Horel and Saita (2009) . With these tools, we are

able to estimate default correlations for CDOs backed by

corporate debt. In addition, by considering multiple models

we are able to evaluate the sensitivity of our default corre-

lation estimates to the choice of modeling assumptions. 

For corporate bonds before the financial crisis (1986 to

2006), our estimated pairwise default correlation is only

0.002 when using only the state-dependent rating transi-

tion matrix. However, when allowing only for model frailty,

the average pairwise bond default correlation jumps to

0.086. These default correlations are more than eight times

those used by rating agencies for CLOs prior to the cri-

sis. Furthermore, the inclusion of both rating changes and

model frailty increases the average default correlation to

0.10. This estimate increases by roughly 25% to 0.125 when

incorporating information contained in the financial crisis

and estimating the models using a sample ending in De-

cember 2012. Overall, our findings show that the joint con-

sideration of co-movement in observable risk factors and

frailty can add considerable thickness to the right tail of

the default distribution. 

We now turn our attention to the extent to which rat-

ing agencies incorporated information gained from the fi-

nancial crisis by examining a set of post-financial crisis

CLOs. Using a small sample of 136 CLOs rated by S&P, we

find that the average default correlation assumed by rating

agencies has increased to 0.033 (as compared to 0.01 pre-

crisis). Unfortunately, this number is considerably below
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6 While the evaluation of structured finance products involves model- 

ing both asset credit risk and cash-flow waterfalls, both S&P and Moody’s 

methodologies treat the two components independently of each other. 

Thus, by focusing on the collateral risk of the underlying asset pool, we 

can cleanly evaluate the default correlation assumptions used by credit 

rating agencies relative to our estimates separately from deal-specific 

cash-flow protections. 
7 For example, Das, Duffie, Kapadia and Saita (2007) study the ex- 

tent to which default intensities modeled as a log-linear function of firm 

and macro observables can explain clustering in firm defaults. Feldhütter 

and Nielsen (2012) use Credit Default Swap (CDS) and CDS index (CDX) 

spreads to estimate a firm’s default intensity as the linear function of a 

common and idiosyncratic component. 
8 Nonetheless, we must parameterize the frailty process to do so, which 

if misspecified would only partially address this failure. 
our estimates across the varying frameworks. We find that 

the measure of AAA collateral risk currently assumed by 

S&P increases 20% under the models we consider, suggest- 

ing that the AAA tranche sizes of recently certified CLOs 

are too optimistic. In partial support of this, we find that 

yield spreads of AAA CDO tranches have increased substan- 

tially following the crisis. To avoid over-parameterizing, we 

have purposefully taken a straightforward and intuitive ap- 

proach to incorporate rating changes and frailty, one that 

leaves room for future extensions. 

For structured products, the most important determi- 

nant of credit risk is appropriately gauging the level of 

default risk and the correlation among the underlying as- 

sets. We focus on the latter, while Cornaggia, Cornaggia 

and Hund (2017) focus on the former by comparing the 

default probabilities across all rated asset classes. Griffin 

and Tang (2012) argue that there was a significant sub- 

jective component of CDO ratings beyond credit risk mod- 

eling that increased from 2002 to 2007. Griffin, Nickerson 

and Tang (2013) find that this subjective component was 

positively correlated with increased competition due to a 

competitor’s more favorable rating assumptions, which in- 

cludes default correlation. These upward adjustments were 

commonly in the 4–8% range. To maintain the same level 

of AAA notes, the incorporation of our default correlation 

estimates would require an additional upward adjustment 

of 17%, indicating that the correlation effects we document 

are quite sizeable. Given the findings of earlier research 

that rating agencies cater to their clients and keep ratings 

high ( Becker and Milbourn, 2011; Griffin, Nickerson and 

Tang, 2013 ; and Cornaggia, Cornaggia and Hund, 2017 ), it 

is possible that rating agencies are not using higher corre- 

lation assumptions that incorporate frailty for fear of losing 

business to their competitors. Our evidence of rating agen- 

cies using low correlation assumptions post-crisis raises 

concerns of continued agency problems in credit rating 

agencies, despite much attention from regulatory bodies. 

In terms of assessing other potential problems in 

structured finance products, Coval, Jurek and Stafford 

(2009) demonstrate that CDO valuation models hinge on 

a high degree of confidence in the parameter inputs. Our 

analysis shows that such confidence was unjustified, as 

correlation assumptions can vary widely. We hope in- 

creased research and transparency of underlying correla- 

tion assumptions will facilitate a better understanding of a 

re-emerging structured finance market. 

2. Default correlation modeling overview 

This section provides a brief discussion of default corre- 

lations and examines the default correlations assumed by 

credit rating agencies leading up to the financial crisis. 

2.1. Default correlations background 

The evaluation of the underlying collateral supporting 

the asset balance sheet of a CDO involves the measurement 

of two characteristics of the pool—the collateral’s quality 

and default correlation. While the quality of the underly- 

ing collateral determines the mean of the pool’s default 

distribution, the collateral’s default correlation determines 
the joint likelihood of default across multiple underlying 

assets, and thus the thickness of the default distribution’s 

upper tail. This correlation has the largest effect on senior 

CDO note holders who receive credit protection on their 

claims provided by the subordinated debt. 6 

The extant literature largely examines the joint credit 

risk of multiple assets by modeling the correlation of de- 

fault intensities or asset lives. 7 An advantage of these ap- 

proaches is their ability to abstract away from a specific 

time horizon in which assets’ defaults are realized. While 

such techniques lend themselves to the study of joint 

credit risk in a broad sense, a limitation of this approach 

is the difficulty in applying the resulting estimates to the 

joint default risk of a specific set of assets. Specifically, the 

joint default risk for specific assets is also a function of the 

assets’ unconditional default probabilities, as discussed in 

more detail below. 

The default intensity approach also commonly relies on 

the doubly stochastic assumption that, conditional on the 

observed paths of risk factors, realized defaults are inde- 

pendent. Duffie, Eckner, Horel and Saita (2009) note that 

the full set of risk factors is not observed by the econome- 

trician, and hence from the econometrician’s vantage point, 

defaults are not doubly stochastic. This leads to their use 

of a time-varying frailty component. We follow their lead 

in incorporating additional systematic risk resulting from a 

failure in the doubly stochastic assumption. 8 

In contrast to the use of default intensities, we take 

an alternative approach which measures default correla- 

tion based on the realized defaults of assets. The use of 

realized defaults has two main benefits. First, the approach 

is advantageous in that it mirrors concerns of an investor 

who is concerned with the risk of default inherent in a 

specific set of assets over the life of a CDO. This motiva- 

tion is highlighted by rating agency methodologies, which 

are based on the simulation of realized defaults ( Standard 

& Poor’s, 2013; Moody’s, 2014 ) and the explicit statement 

of their concern for achieving an appropriate correlation of 

realized defaults ( Moody’s, 2010 ). Consistent with this rea- 

soning, realized default correlations are strongly correlated 

with the measure of credit risk used by S&P, the Scenario 

Default Rate (SDR). In contrast, the correlation of default 

intensities can be unrelated to SDR. Internet Appendix Fig. 

IA.1 demonstrates this with an example in which the de- 

fault correlation and SDR of assets are related, while the 

correlation of the assets’ default intensities is held fixed at 

unity. Hence, the correlation of default intensities can be 
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10 These derivations are shown in Appendix A . While S&P publishes 

methodological documents reporting inter- and intra-industry asset corre- 

lation assumptions, these reported asset correlations are not the same as 
disconnected from the tail-risk of a collateral pool while

the correlation of realized defaults is highly related. 

Focusing on realized default correlation leads to a sec-

ond main benefit, namely, that we can directly compare

our estimates to the credit rating agencies. While the cor-

relation in default intensities is not easily compared to the

methods used by rating agencies, we are able to derive

closed-form solutions of realized default correlations from

the proprietary correlation metrics used by both S&P and

Moody’s at the deal level. 

A potential drawback of using correlations of realized

defaults is that the estimate varies with the maturity of

the assets. More specifically, as the probability of default

for the underlying assets approaches zero, the correlation

in realized defaults attenuates towards zero. This asymp-

totic result can occur by reducing the time-horizon to zero

over which defaults are measured. Thus, when using the

correlation in realized defaults to estimate the joint risk

of default for two assets over a very short period, such

as a week, the estimated default correlation will be close

to zero for mechanical reasons. Alternatively, this result

arises when estimating the default correlation between as-

sets with less credit risk (and thus a smaller probability

of default). Aware of this concern, Moody’s (2010) states

that they “increase the asset correlation assumptions in

the investment-grade rating categories...in order to gener-

ate default correlations in line with current observations.”

We explore the sensitivity of our estimates with respect

to this conditional dependence in Section 5.4 , and also use

the rating agencies’ deal-specific weighted-average matu-

rity in order to effectively compare our estimated agency

assumptions in a matched sample. Overall, we believe that

the choice of estimating correlations from realized defaults

rather than from default intensities is beneficial given the

allowance for frailty, its relation to the tail-risk of CDO col-

lateral pools, and direct comparability with rating agency

assumptions. 

2.2. Pre-crisis correlation assumptions for Moody’s and S&P 

Before introducing our approach to estimating default

correlations, it is useful to examine the assumptions used

by credit rating agencies (CRAs) prior to the financial crisis.

Examining rating agency default assumptions provides us

with a baseline to which we can compare the estimated

default correlations stemming from our models prior to the

crisis. If rating agency assumptions and our estimates are

similar in magnitude pre-crisis, then it may suggest that

the recent structured finance crisis more closely resembled

a black swan. If our estimates are higher than the rating

agencies, then it may suggest a risk factor present in the

pre-crisis data that is unaccounted for by pre-crisis models

used by CRAs. 

We now turn to a sample of CDOs backed by bond and

loan collateral. 9 Although default correlation assumptions

of rating agencies have been a topic of speculation, they

have escaped systematic examination. This may be related
9 Further details concerning the data can be found in Internet 

Appendix A . 
to the fact that rating agencies do not directly report the

default correlation that is assumed for a CDO, but instead

report proprietary measures such as ‘diversity score’ and

‘correlation measure.’ Thus, we first back out default cor-

relation estimates from other model outputs provided by

the rating agencies. 10 

Table 1 reports summary information for our sample.

The average (median) collateral pool for a deal in our sam-

ple consists of roughly 140 (131) obligors. The potential di-

versification effect of such a large asset pool highlights the

key role that correlation plays in determining risk to se-

nior tranche holders. Table 1 also shows that for the av-

erage corporate debt-backed deal in the sample, S&P as-

sumes a pairwise default correlation in the underlying col-

lateral pool of 0.0099. Moody’s average default correlation

is only slightly higher at 0.011. To illustrate the economic

meaning of these assumptions, consider the following ex-

ample. Suppose there are two corporate bonds with identi-

cal probabilities of default p . Each bond’s realization of de-

fault is stochastically determined by either a macro factor

or a firm-specific idiosyncratic factor. 11 A default correla-

tion of 0.01 implies that the probability that both bonds’

default realization is determined by the common macro

factor is 1.00%. In this case, they will either survive or de-

fault together, while they will otherwise perform indepen-

dently of each other. 

Panel B of Table 1 indicates that there is very little vari-

ation in default correlations over time, with similarly small

default correlations across different years of origination.

The sole exception is the slight increase in the default cor-

relation assumed by S&P (0.0187) in the 20 06–20 07 period.

In addition, there does not seem to be substantial disagree-

ment between the two rating agencies’ assumptions. 

Finally, Fig. 1 reports the distribution of correlation as-

sumptions made by S&P. The figure illustrates that the ma-

jority of Collateralized Bond Obligations (CBOs) and CLOs

had an average pairwise default correlation of less than

0.0075. Note, there is a small portion of deals with a de-

fault correlation greater than 0.03. S&P’s estimate of de-

fault correlation is based on correlation assumptions esti-

mated within and across industries. Thus, the underlying

collateral in such deals likely has a higher degree of indus-

try concentration relative to the other deals in the sample.

2.3. Impact of default correlations on SDR 

While the previous section documents the default cor-

relations assumed by rating agencies, it is not clear how

much these assumptions influenced the estimated collat-

eral risk of the underlying pool of assets. 

Fig. 2 illustrates how collateral risk is affected by

changes in the default correlation and collateral quality
default correlations which capture correlation in the realization of default. 

For a representative deal an asset correlation of 0.10 (0.20) is roughly 

equivalent to a default correlation of 0.05 (0.105). 
11 For simplicity, assume that the components share a common likeli- 

hood of default of p . 
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Table 1 

Summary statistics. 

This table reports summary statistics collected from S&P Presale and New Issue reports for 838 CDOs over the time period between January 20 0 0 

and December 2007. Panel A reports deal-level characteristics. Summary statistics for the average pairwise default correlation assumed are through time 

reported in Panel B. 

Panel A: summary statistics 

N Mean Median Std. dev. p10 p90 

S&P default correlation 838 0.0099 0.0065 0.0079 0.0042 0.0237 

Moody’s default correlation 831 0.0110 0.0095 0.0125 0.0076 0.0141 

S&P collateral default probability 838 0.2367 0.2291 0.0745 0.1582 0.3241 

Moody’s collateral default probability 831 0.1908 0.1852 0.0554 0.1485 0.2480 

No. of obligors 838 140.29 131.27 64.86 67 223 

Deal size ($M) 834 354.75 353.50 272.71 0.46 588.00 

Weighted-average maturity 838 5.91 5.63 1.33 4.83 7.56 

Panel B: correlation by origination year 

S&P Moody’s 

N Mean Median N Mean Median 

Pre-2004 266 0.0060 0.0052 264 0.0129 0.0099 

2004 69 0.0065 0.0059 69 0.0098 0.0094 

2005 102 0.0070 0.0060 102 0.0100 0.0091 

2006 193 0.0077 0.0068 192 0.0098 0.0089 

Post-2006 166 0.0187 0.0221 162 0.0098 0.0092 

Fig. 1. Average default correlation assumptions. This figure reports the histogram of the average pairwise default correlation assumed in the S&P model 

for Collateralized Bond Obligations and Collateralized Loan Obligations. The sample consists of 838 CLOs and CBOs issued over the time period between 

January 20 0 0 and December 20 07. Details on the derivation of default correlations can be found in Appendix A . 

 

of the underlying pool. S&P represents the riskiness of 

the collateral pool with the Scenario Default Rate (SDR), 

which is equivalent to the value-at-risk (VaR) of the collat- 

eral pool’s default distribution. 12 Specifically, the SDR for 

a given rating and Weighted Average Maturity (WAM) (for 

instance, the AAA SDR for a CDO with a 7-year WAM) is 

the VaR with a confidence interval equal to the expected 

default probability of an asset with an equal credit rat- 

ing and maturity (in this case a 7-year AAA bond). We 

provide an example of the SDR computation in detail in 

Appendix B . 
12 When the timing of defaults and cash-flow protection for a deal is 

ignored, the required credit support necessary to obtain a AAA rating is 

linearly increasing in the SDR. 
Fig. 2 indicates a concavity where the SDR is particu- 

larly sensitive to changes in the correlation assumption for 

lower correlation levels. This makes the choice of default 

correlation particularly crucial for CDO modeling. Changing 

the default correlation from 0.005 to 0.015 increases the 

SDR of the pool by roughly 0.06, or 25% of its prior value. A

CDO comprised of collateral of median quality with a cor- 

relation near zero has an SDR of about 32%, whereas a CDO 

with a default correlation of 0.035 has approximately 13% 

more SDR (45%). CDOs with a default correlation of 0.10 

have a further 0.10 increase in their SDRs to slightly more 

than 55%. Many junior AAA tranches consisted of only 10% 

of the capital structure. Thus, even such a small change in 

correlation, could lead to a large economic effect on the 

amount of capital that can obtain a AAA rating or, alterna- 

tively, the rating itself. 
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Fig. 2. Sensitivity of scenario default rate (SDR) to default correlation. This figure reports the surface plot of the change in SDR with respect to default 

correlation. The figure plots the SDR for a given range of default correlations for a CDO estimated with collateral quality set to the 25th (low quality), 

50th (median quality), and 75th (high quality) percentiles of our sample. The number of equal-sized assets in the collateral pool is set to 131, equal to the 

median number of obligors in the CDOs of our sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our preliminary examination has shown that the pre-

crisis default correlations assumed by credit rating agen-

cies for corporate debt were typically between 0.005 and

0.025, and that upper tail-risk is particularly sensitive to

even small changes in the assumed default correlation at

such levels. While these assumed levels seem low, we need

a methodology to accurately assess if they are consistent

with the empirical evidence. 

3. Modeling joint default risk of CDO collateral 

Estimating the default correlation of a CDO’s asset pool

requires assessing the joint default risk of the underlying

assets. Our approach estimates this common risk compo-

nent by incorporating the effects of observable risk fac-

tors and unobserved systematic risk in 10 0,0 0 0 simulated

cross-sections of asset defaults for a given CDO’s collateral

pool, from which we are able to estimate a default corre-

lation. 13 

Additionally, our approach also allows for an unobserv-

able systematic component of default risk not captured by
13 Specifically, we first estimate the time-series properties of explana- 

tory variables that predict asset default. Using these estimates, for each 

CDO we draw 10 0,0 0 0 paths of all explanatory variables, such as rat- 

ing transitions, with length equal to the structured product’s weighted- 

average maturity. We then compute each asset’s probability of default un- 

der each path drawn from the fitted values of a hazard model. From these 

default probabilities we simulate realizations of default within the pool. 

 

observables, or model frailty . 14 We begin by discussing the

generic modeling of frailty before discussing the specific

set of observable factors included. 

3.1. Unobserved frailty 

We model the arrival time of default for an asset as a

Poisson process with intensity: 

λit = e α+ βX it + Y t (1)

where X it is a set of asset-specific covariates, and Y t is

a time-varying unobservable macro factor that affects the

likelihood of default for all assets, or model frailty. Eq.

(1) represents an exponential survival model, with the ex-

ception of the unobservable factor. 

While the set of asset-specific covariates represents risk

factors observable to the econometrician, default correla-

tions should also account for the unmodeled risk whose

systematic nature has implications for the severity of tail

losses. We now propose an adaption of the frailty model

of Duffie, Eckner, Horel and Saita (2009) , which identifies

the unobservable frailty path using time-varying deviations
14 To be technical, ‘frailty’ typically refers to the case of what is left 

over when including an inexhaustible set of explanatory variables. For our 

first set of models which only include ratings, a more technical term for 

the second source of risk is ‘unmodeled systematic risk.’ However, since 

‘frailty’ and ‘unmodeled systematic risk’ are conceptually and empirically 

similar, we use the term ‘frailty’ for brevity. 
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of realized firm defaults relative to expectations given ob- 

servable risk factors. 15 

Given the unobservable nature of the model frailty, Y , 

for tractability structure must be imposed on its time- 

series dynamics. Following Duffie, Eckner, Horel and Saita 

(2009) we assume that the unobservable macro factor fol- 

lows an Ornstein-Uhlenbeck (O-U) process: 

dY t = −κY t d t + d B t (2) 

where κ captures the speed of mean-reversion for the pro- 

cess while the series of innovations, dB , follows a stan- 

dard Brownian motion. However, by assuming an O-U pro- 

cess we are fixing the variance of innovations. Ultimately, 

it is the volatility of innovations and the speed of mean- 

reversion that drive the correlation in asset defaults. Thus, 

we multiply Y by the scaling parameter η, such that the 

default intensity from (1) now becomes: 

λit = e α+ βX it + ηY t (3) 

where η is a scaling parameter which determines the role 

that the macro factor plays in a firm’s default intensity. In- 

tuitively, a larger value of η suggests that the unobservable 

macro factor plays a larger role in determining the likeli- 

hood of default for all firms in the economy and increases 

the correlation of defaults within a collateral pool. 

To estimate the parameter set ( η, κ), we follow 

the process outlined in Duffie, Eckner, Horel and Saita 

(2009) which uses an expectations maximization algo- 

rithm and Gibbs sampling to estimate the conditional dis- 

tribution of Y . The full procedure is outlined in Internet 

Appendix B . 

3.2. Explanatory covariates of collateral default 

Rating agencies infer collateral risk for a CDO from the 

credit ratings of the underlying assets at the deal’s origi- 

nation date. Our first class of models relies on this same 

covariate when predicting asset default. However, in con- 

trast to the rating agencies, we allow ratings to be up- 

dated contemporaneously when predicting asset default. 

Rating agency methodologies infer collateral risk by map- 

ping credit ratings to historical default probabilities. We 

mirror this approach and use the default intensity implied 

by a firm’s credit rating in Eq. (3) . 16 

The second class of models we consider augments the 

ability of credit ratings to predict default with the addi- 

tional information contained in macroeconomic explana- 

tory variables. Specifically, in addition to a firm’s credit 

rating we include the following covariates: the trailing 
15 Azizpour, Giesecke and Schwenkler (2015) find that frailty is still a 

significant source of default clustering when also considering contagion 

amongst firms, while Koopman, Lucas and Schwaab (2011) show that 

frailty represents the combined effects of multiple one-off events not 

quantified by macro variables and He and Xiong (2012) relate frailty to 

correlated bond liquidity shocks. 
16 For each credit rating S&P issues, we solve for the value of X which 

when inserted into (1) as the sole explanatory variable would result 

in an expected likelihood of default that matches S&P’s one-year im- 

plied probability of default. Specifically, for a credit rating with an im- 

plied one-year probability of default of p , the (monthly) value of the 

explanatory variable necessary to match implied default probabilities is 

X = ln ( − ln ( 1 − p ) / 12 ) . 
one-year market return, 3-month Treasury rate, AAA credit 

spread over the 10-year Treasury yield, and the seasonally 

adjusted civilian unemployment rate from Federal Reserve 

Economic Data (FRED). 17 

3.3. Ratings and macro covariates as predictors of default 

To estimate the models, we obtain S&P’s long-term 

corporate credit ratings updated at a monthly level for 

roughly 2,0 0 0 firms from January 1, 1986 to December 31, 

2013 from Compustat. Additionally, primary default infor- 

mation is obtained from the deletion date and reason fields 

provided by the Center for Research in Securities Prices 

(CRSP)/Compustat. 

We use Maximum Likelihood Estimation (MLE) to esti- 

mate (3) where covariates are updated on a monthly basis. 

Thus, the model is estimated over a given horizon using 

the pooled sample of firm-month observations within this 

time period. Note that we use the universe of firms with 

credit ratings provided by Compustat when estimating the 

model parameters. 18 The MLE parameter estimates that we 

obtain from the full sample are reported in Table 2 for both 

the rating-based models (specifications 1 and 2) as well as 

the model incorporating macroeconomic covariates (speci- 

fications 3 and 4). We report standard errors in parenthe- 

ses. Only the credit rating-implied default intensity is in- 

cluded in the first specification. A coefficient of one would 

translate into differences in realized defaults across bonds 

sorted into rating buckets that perfectly matched the dif- 

ference in default intensities across the rating categories. 

At the other extreme, a coefficient of zero would indicate a 

constant probability of default regardless of the credit rat- 

ing bucket, suggesting the ratings contained no informa- 

tion about credit risk. Thus, the coefficient of 0.872 indi- 

cates that there is less spread in realized defaults than sug- 

gested by rating-implied default intensities. The inclusion 

of a frailty component in the second specification leaves 

this coefficient virtually unchanged. 

Interestingly, the estimated standard deviation of the 

frailty path which is captured by the scaling factor, η, is 

quite large with a value of 0.203 when using only credit 

ratings to predict default risk. If mean-reversion is ignored, 

this translates to a yearly standard deviation of 0.703. 

An increase of this magnitude in the frailty factor raises 

each firm’s default intensity by a factor of roughly e 0.703 

≈ 2.02. This effectively doubles each firm’s likelihood of 

default. To give economic content to this estimate, sup- 

pose that a bond currently holds a long-run credit rating 

of ‘Baa1’ which maps to an unconditional 5-year probabil- 
17 We select each covariate from a set of candidates based on their 

marginal improvement in explanatory power. Other covariates considered 

and rejected include Gross Domestic Product (GDP) growth, 10-year Trea- 

sury yield, Baa-Aaa spread, West Texas Intermediate (WTI) Crude spot 

price, University of Michigan’s consumer sentiment measure, and FRED’s 

U.S. Recession Probability. Shumway (2001) and Campbell, Hilscher and 

Szilagyi (2008) document important firm-specific default covariates. 
18 While one could restrict the sample to only pieces of collateral used 

in CLOs, this would lead to less precisely estimated parameters given the 

already small number of defaults in the full sample. Credit rating agen- 

cies ( Moody’s, 2004 ) also use the universe of all corporate bonds when 

developing their methodologies. 
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Table 2 

Corporate debt parameter estimates. 

This table reports the results of an exponential hazard model of cor- 

porate defaults reported in Compustat from January 1986 to December 

2012. Rating implied intensity is the implied default intensity from S&P’s 

one-year rating default probabilities. AAA spread is difference in AAA cor- 

porate debt yields and the 10-year Treasury rate and 3 -Month yield is the 

Treasury yield, both reported by FRED. Unemployment is the seasonally 

adjusted U.S. civilian unemployment rate. 12 -Month market return is the 

lagged annual CRSP value-weighted return. Frailty volatility is the scal- 

ing factor, η, from Eq. (3) . Frailty mean-reversion is the speed of mean- 

reversion, κ, from Eq. (2) . Data are at the monthly level; all covariates 

are measured at month end and used to predict default during the fol- 

lowing month. Standard errors are reported in parentheses. Log-likelihood 

is the average loglikelihood across all frailty paths drawn from the Gibbs 

sampler. 

(1) (2) (3) (4) 

Rating implied intensity 0.872 0.860 0.848 0.849 

(0.0174) (0.0175) (0.0175) (0.0177) 

AAA spread 0.658 0.526 

(0.1376) (0.2130) 

3-Month yield 0.048 0.078 

(0.0338) (0.0311) 

Unemployment −0.215 −0.171 

(0.0393) (0.0472) 

12-Month market return −1.954 −1.944 

(0.2913) (0.2897) 

Frailty volatility, η 0.203 0.142 

(0.0105) (0.0128) 

Frailty mean-reversion, κ 0.020 0.029 

(0.0118) (0.0242) 

Intercept −2.119 −2.092 0.002 −0.151 

(0.0708) (0.0717) (0.6109) (0.6081) 

No obs. 670,465 670,465 670,465 670,465 

Log-likelihood −3453.11 −3348.34 −3330.95 −3263.44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ity of default of roughly 1.10% ( Araya, Mahdavi and Ouzi-

dane, 2006 ). The estimate of η indicates that a one (yearly)

standard deviation increase in the frailty component will

increase the 5-year default probability to 2.21% which is

equivalent to roughly a 1.5 notch decrease in the bond’s

credit rating. 

Furthermore, the frailty process exhibits a relatively

slow rate of mean-reversion ( κ of 0.020). To illustrate this,

consider a first-order auto-regressive process, the discrete

analog of the O-U process. Here, if the frailty component

of a firm’s default intensity receives a shock, 78.7% of the

shock will still be present in the default intensity of the

firm 12 months later. 19 This indicates that credit ratings ei-

ther understate or overstate credit risk for extended peri-

ods of time. We discuss possible explanations for such per-

sistence in Section 5.2 . 

The estimation results incorporating only credit ratings

are pertinent to examining CBO and CLO credit ratings

since rating agencies only use credit ratings to evaluate

the riskiness of CBO or CLO collateral pools. However,

when only relying on a single predictive factor, a credit

rating, one would expect the unexplained systematic risk

to play a greater role. Therefore, the third and fourth

specifications include a set of macro-explanatory variables

of firm default. Their inclusion reduces the role played
19 In a discrete setting, the speed of mean-reversion becomes 1 − e −0 . 02 , 

thus the AR(1) parameter is e −0 . 02 = 0 . 980 when measured at a one- 

month interval. Thus, the effect after 12 months is 0 . 980 12 = 0 . 787 . 

 

by unmodeled risk; the scaling factor, η, decreases from

0.203 (in Specification 2) to 0.142 (in Specification 4). The

mean-reversion speed, κ , also increases from 0.020 to

0.029 indicating a decrease in the persistence of a shock

to the frailty component. 

4. Methodology for co-movement in default risk 

The first class of models we consider focuses solely

on how asset-specific credit ratings co-move together and

the implications this has for co-movements in credit risk.

When rating a CDO, collateral risk must be inferred from

credit ratings at the deal’s origination date. Any common

change in these ratings in the future constitutes a system-

atic risk that should be incorporated into the default cor-

relation. Part of Moody’s methodology is based on the co-

movement of credit ratings, referred to as the directional

rating transition matrix (DRTM) approach ( Moody’s, 2004 ).

This technique estimates asset correlations based on the

joint-likelihood of two ratings being upgraded or down-

graded together over a one-year horizon. However, it as-

sumes no autocorrelation in the joint-likelihood of direc-

tional rating changes across years. Empirically, it is well

known that an abnormally large percentage of credit rat-

ing downgrades in a given year is often followed by in-

creased rating downgrades in the subsequent year, which

would not be captured by the DRTM approach. 20 

Our first set of models addresses this concern, where

the simplest model characterizes credit ratings as follow-

ing one of two transition matrices, corresponding to a good

and bad state. In the good state, firms are more likely to

have their credit ratings upgraded relative to the uncondi-

tional likelihood of an upgrade, and likewise downgraded

in the bad state. We model the transition between the two

regimes using a two-state hidden Markov model. 

We begin by ranking all credit ratings in ascending

probability of default ( AAA, AA , etc.), and indexing these

ratings with ordinal values 1 , 2 , . . . , n, respectively. A rat-

ing transition matrix, �, is a matrix with dimension n × n

where each element π ij is the probability that an asset

that has an initial credit rating indexed by i at time t tran-

sitions to a rating indexed by j at time t + 1 . The likelihood

of a set of rating changes, Z , being generated from a tran-

sition matrix � in a given period is proportional to: 

L ( �| Z ) = 

n ∏ 

i =1 

n ∏ 

j=1 

π
N i j 

i j 
(4)

where N ij is the number of credit ratings that transition

from state i to state j . 

However, our interest is in identifying periods when the

likelihood of rating changes is systematically biased up-

wards or downwards due to changes in the macroeconomy.

To do this, the first model we propose combines two rating

transition matrices, �( g ) and �( b ) , with a hidden Markov

model (HMM) governing the switching between good ( g )

and bad ( b ) states. In our implementation, for each credit

rating i we constrain the expected ordinal credit rating
20 Nickell, Perraudin and Varotto (20 0 0) relate these time-varying tran- 

sition probabilities to the business cycle. 
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in the following period to be lower (corresponding to a 

higher expected credit quality) in the good state than in 

the bad state: 

N ∑ 

j=1 

[
j · π(g) 

i j 

]
< 

N ∑ 

j=1 

[
j · π(b) 

i j 

] ∀ i. (5) 

Following this restriction, the full-information likelihood of 

a set of rating changes, Z , coinciding with transition ma- 

trices �( g ) and �( b ) and probability p s of being in state s 

is proportional to an average of the state-dependent like- 

lihoods from (4), weighted by the probability of the econ- 

omy being in that state: 

L 

(
�(g) , �(b) | Z ) = 

∑ 

s ∈ { g,b} 
p s · L 

(
�(s ) | Z ). (6) 

Thus, the full estimation procedure requires estimating two 

state-dependent transition matrices, ˆ �(g) and 

ˆ �(b) , prob- 

abilities of being in the good and bad state for each pe- 

riod, and the accompanying 2 × 2 transition matrix char- 

acterizing the probabilities of switching between the hid- 

den states. Following common practice, we estimate the 

HMM using the Baum-Welch algorithm as outlined in 

Appendix C with monthly data on credit rating changes. 

While implementing a two-state HMM allows us to 

model rating changes in good and bad states, confining 

the economy to only two states may be overly restric- 

tive if periods frequently occur in which ratings do not 

exhibit a large degree of upgrades or downgrades. Thus, 

our second model allows for three state-dependent rating 

transition matrices, representing good, moderate , and bad 

states. 21 Fortunately, the only modification to the two-state 

framework needed is to extend the constraint in (5) to ac- 

commodate the moderate state: 

N ∑ 

j=1 

[
j · π(g) 

i j 

]
< 

N ∑ 

j=1 

[
j · π(m ) 

i j 

]
< 

N ∑ 

j=1 

[
j · π(b) 

i j 

] ∀ i. (7) 

Simply modeling correlated changes in ratings will fail 

to capture systematic default risk not contained in the rat- 

ings, such as business cycle conditions ( Nickell, Perraudin 

and Varotto, 20 0 0 ). Therefore, we extend these rating- 

based models to also include macroeconomic covariates, 

modeling their time-series dynamics using a first-order 

vector auto-regression AR(1), following Duffie, Saita and 

Wang (2007) . MLE results are reported in Appendix D . 

5. Estimation results for corporate bonds 

5.1. Rating-based estimation 

Table 3 reports the estimation results for the class of 

HMMs characterizing rating transitions. Panel A reports the 

difference in the expected monthly change in the credit 

rating of a firm between the bad and good states, condi- 

tional on the firm’s current rating. The table indicates that 

the expected rating for a firm whose initial rating is ‘B,’ the 
21 For robustness, we also propose an alternative model based on 

the continuous analog to the finite-spaced HMMs used here. The com- 

plete model details and estimation procedure are reported in Internet 

Appendix B , with results reported in the Internet Appendix tables. 
most common underlying collateral rating in our sample, 

is 0.014 greater in the bad state of the economy than in 

the good state. Intuitively, this is equivalent to an increased 

likelihood of being downgraded by one notch to ‘CCC’ of 

1.4% per month in the bad state compared to the good 

state. This difference is generally smaller in investment- 

grade debt with less default risk. 

Panel B reports the estimated probabilities of transi- 

tions between the hidden states for the two-state HMM. 

The estimates suggest that the state of the economy, which 

governs the likelihood of rating upgrades and downgrades, 

is relatively persistent. Additionally, there is asymmetry in 

the switching probabilities. Given that the economy is cur- 

rently in the good state in a given month, the probability of 

switching to the bad state in the following month is only 

4.3%. However, conditional on currently being in the bad 

state, the likelihood of the economy transitioning to the 

good state in the next month is 14.6%. 

However, restricting the economy to two states may ex- 

acerbate these switching probabilities if credit rating tran- 

sitions frequently resemble some intermediate state be- 

tween the good and bad states. To examine this possibility, 

Panel C reports the estimated switching probabilities for 

the three-state HMM. Interestingly, the switching probabil- 

ities conditional on being in the good or bad state are more 

symmetric relative to their two-state counterparts reported 

in Panel B. Additionally, the probability of remaining in the 

same state for two consecutive periods is relatively con- 

stant at approximately 85% across the good, moderate , and 

bad states. 22 

5.2. Model frailty and good vs. bad states 

We now examine the segmentation of rating changes 

into the good and bad states and model frailty over the 

sample period. Fig. 3 illustrates the mean of the frailty pro- 

cesses drawn from the Gibbs sampler for the ratings-only 

model, the model using the full set of macro covariates, 

and the posterior marginal probabilities of the two-state 

HMM. Note that for each model, we initialize the frailty 

path to a value of zero in January 1986. 

The mean frailty path when incorporating default in- 

formation from only credit ratings indicates that corpo- 

rate bond credit ratings tend to overstate the likelihood of 

default over the time interval from 1989 to 1998 before 

understating the probability of firm default from 1999 to 

2003 in relative terms. Bond ratings are relatively conser- 

vative in the period from 2003 to the first half of 2007, in 

contrast to their performance in the second half of 2007 

to the beginning of 2009. Recall that credit ratings are up- 

dated monthly in the estimation process. Overall, this in- 

dicates that there is considerable variation in an unobserv- 

able systematic component of firm default through time 

that contemporaneous credit ratings do not account for. 

This variation is not confined to the recent financial crisis, 

with the frailty path exhibiting substantial variation prior 

to 2007. However, it is perilous to draw absolute inferences 
22 The difference in expected monthly rating change between the bad 

and good states is quantitatively similar to the two-state HMM reported 

in Panel A. 
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Table 3 

Rating transition parameter estimates. 

This table reports the results of the estimates for the two-state HMM model of rating transitions (Panels A and B) and three-state HMM model (Panel 

C). Included are all rating changes reported in Compustat from January 1986 to December 2012. Data and estimates are at the monthly level. Bootstrapped 

standard errors are reported in parentheses. 

Panel A: two-state HMM: rating transitions 

AAA AA A BBB BB B CCC CC 

E(Rating t+1 | Bad) - 

E(Rating t+1 | Good) 0.007 0.010 0.006 0.005 0.009 0.014 0.021 0.003 

(0.0044) (0.0026) (0.0011) (0.0 0 09) (0.0013) (0.0015) (0.0040) (0.0188) 

Panel B: two-state HMM: state transitions 

Current state: Good Bad 

Prob(Good) at t + 1 0.957 0.146 

(0.0291) (0.0291) 

Prob(Bad) at t + 1 0.043 0.854 

(0.0523) (0.0523) 

Panel C: three-state HMM: state transitions 

Current state: Good Moderate Bad 

Prob(Good) at t + 1 0.838 0.103 0.018 

(0.0967) (0.0648) (0.0496) 

Prob(Moderate) at t + 1 0.122 0.857 0.143 

(0.0835) (0.0818) (0.0618) 

Prob(Bad) at t + 1 0.039 0.039 0.839 

(0.0460) (0.0350) (0.0609) 

Fig. 3. Estimated frailty and rating transition paths for corporate bonds. This figure illustrates the conditional mean of the frailty path from a hazard model 

fitted using only the firm’s credit rating lagged by one month (solid line) and also including the set of macro covariates reported in Table 2 (dashed line). 

4,800 paths were drawn from a Gibbs sampler using the estimated coefficients from the fitted frailty models reported in Table 2 . Each path has been scaled 

by its respective scaling parameter, η. ‘ HMM prob ’ represents the posterior probability of the bad state (shaded region) from the two-state HMM. Posterior 

probabilities were calculated using the Forward–Backward algorithm. 
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23 Note, we do not model the correlation across determinants of credit 

risk, instead drawing frailty paths, hidden states, and macro covariates 

independently of each other. 
about credit rating standards from this figure since such a 

comparison also takes into consideration the coefficient on 

rating-implied default intensity and intercept reported in 

Table 2 . 

Fig. 3 also plots the frailty path of the second class 

of models that incorporate macro-explanatory variables, 

yielding an interesting set of findings. The first thing of 

note is that the macro-model’s frailty path exhibits less 

time-variation, confirming the estimated coefficients from 

Table 2 . Furthermore, while the inclusion of macro covari- 

ates helps explain some of the predictive shortcomings 

of ratings, the model frailty present when using macro 

covariates is correlated with the unmodeled risk not ac- 

counted for in credit ratings. 

This reduction in model frailty when including macro 

covariates suggests that credit ratings do not fully capture 

the credit risk of firms. One possible driver of such per- 

sistence in frailty when incorporating only the informa- 

tion in credit ratings is the tendency for ratings to become 

‘stale’ over time ( Löffler, 2005; Hand, Holthausen and Left- 

wich, 1992 ). Another explanation consistent with a credit 

rating that understates risk during periods of economic 

downturns is the tendency of agencies to rate “through- 

the-cycle” ( Standard & Poor’s, 2003 ). When contrasting the 

estimated frailty path against the business cycle, the figure 

suggests that ratings understate risk in economic down- 

turns and overstate risk in expansionary periods, consis- 

tent with agencies rating through-the-cycle. Thus, the true 

default risk of a CDO’s collateral pool can be systematically 

understated or overstated depending on the current eco- 

nomic conditions, resulting in correlated default risk of the 

underlying assets. 

We now turn to an examination of systematic rating 

changes. To the extent that credit ratings of the collateral 

pool change in a systematic fashion, this adds another po- 

tential source of tail risk to the tranche holders. This risk 

is confirmed when examining the posterior marginal prob- 

abilities of the bad state of the economy (the shaded area 

in Fig. 3 ). Fig. 3 indicates that there are extended periods of 

time when credit ratings are more likely to be downgraded 

or upgraded in a systematic fashion. Interestingly, the pos- 

itive correlation between the mean frailty path and the 

probability of being in the bad state indicates that in times 

when a credit rating is more likely to be downgraded, the 

harsher rating is also more likely to understate the firm’s 

default risk. 

Overall, the results in this section suggest both model 

frailty and systematic changes in observable default risk 

factors possess considerable time-series dynamics which 

lead to periods where risk is understated or overstated. 

5.3. Default correlation in corporate bonds 

We now use the results from the previous subsection 

to estimate the default correlation present in a CBO’s pool 

of corporate bonds. Intuitively, we use the estimated time- 

series dynamics of the observable covariates and frailty to 

repeatedly simulate possible cross-sections of hazard rates 

and thus defaults of a CBO’s collateral pool. 

For each model and CBO, we begin with the initial 

credit ratings of the structured product’s collateral pool. 
We then draw 10 0,0 0 0 paths of the frailty process with 

length equal to the structured product’s weighted-average 

maturity. For each model, we also simulate hidden states 

of the economy, their associated rating transition matri- 

ces, and time-series of macro covariates when considering 

appropriate models. 23 Using these transition matrices, we 

next simulate credit rating changes for each asset over the 

CDO’s life. To incorporate the effects of frailty and observ- 

able covariates, we first take the resulting draws of credit 

ratings, frailty, and macro covariate time-series and com- 

pute each asset’s probability of default using Eq. (3) and 

the MLE parameter estimates obtained. From these default 

probabilities we simulate realizations of default within the 

pool. The result is 10 0,0 0 0 cross-sections of asset defaults 

for a given CBO’s collateral pool. It should be noted that 

up to this point, our approach only differs from that of 

S&P in one dimension. We simulate cross-sections of de- 

fault from a time-varying default intensity that incorpo- 

rates frailty while the rating agency generates them from 

a Gaussian Copula. From these default realizations, we cal- 

culate the average pairwise default correlation of the col- 

lateral pool. Specifically, when computing the average we 

value-weight each asset-pair’s default correlation, ρ ij , by 

the product of the two assets’ sizes, w i and w j , respectively. 

Table 4 reports the average default correlation across 

our sample of CBOs issued prior to 2007 for each model. 

We begin by restricting ourselves to the data available to 

rating agencies prior to the financial crisis. Thus, Panel A 

reports the results when estimating model parameters us- 

ing data observable from January 1986 to December 2006, 

and then using these parameter estimates to simulate re- 

alizations of defaults and default correlations. To begin, 

we focus on the default correlation attributable to rating 

transitions alone in the two-state HMM. The average pair- 

wise default correlation for our sample is 0.0017 when 

considering only a good and bad state transition matrix 

and increases marginally to 0.0019 under the three-state 

HMM. These results suggest that the risk of common de- 

fault across multiple firms appears to be slight when ex- 

amining only co-movement in credit ratings. 

The previous specifications assume that credit ratings 

perfectly reflect default risk at all times. We now turn 

our attention to frailty, or the default risk not captured 

by credit ratings. The second column of Table 4 reports the 

pairwise default correlations for our sample of CBOs when 

subject to the common frailty factor. The results are strik- 

ing. The default correlation due to frailty ( Unmodeled risk ) 

is 0.0856 for our sample. This value is close to a full or- 

der of magnitude larger than either the default correlation 

due to Modeled risk factors or the average default correla- 

tion used by S&P prior to the financial crisis. Note, the de- 

fault correlation due to Unmodeled risk is identical under 

the first three models because each model uses the same 

set of covariates in predicting firm default. 

Finally, we consider the joint effect when accounting 

for both co-movement in ratings and frailty in the Both 

column. The average default correlation for our sample 
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Table 4 

Corporate bond default correlations. 

This table reports the average pairwise default correlation for a sample 

of corporate-backed CDOs issued from 20 0 0 to 20 07. Reported are the 

results obtained when estimating each model using data from January 

1986 to December 2006 (Panel A) and from January 1986 to December 

2012 (Panel B). Modeled risk factors denotes the default correlation re- 

sulting from co-movement in observable risk factors considered in each 

model specification. Unmodeled risk denotes the default correlation re- 

sulting from systematic, unmodeled risk. Both denotes the default corre- 

lation when considering both co-movement in modeled risk factors and 

systematic unmodeled risk. The default correlation for each deal is cal- 

culated as the value-weighted pairwise default correlation between the 

underlying assets, where each pairwise weight is equal to the product of 

the two assets’ sizes. Bootstrapped standard errors are reported in paren- 

theses. 

Panel A: pre-2007 sample correlation estimates 

Modeled risk Unmodeled 

Methodology factors risk Both 

Ratings only: 

2-State HMM 0.0017 0.0856 0.1019 

(0.0 0 02) (0.0076) (0.0075) 

3-State HMM 0.0019 0.0856 0.1016 

(0.0 0 02) (0.0076) (0.0073) 

Ratings & macro covariates: 

2-State HMM 0.0397 0.0335 0.0778 

(0.0069) (0.0091) (0.0117) 

3-State HMM 0.0412 0.0335 0.0791 

(0.0069) (0.0091) (0.0117) 

Panel B: full sample correlation estimates 

Modeled risk Unmodeled 

Methodology factors risk Both 

Ratings only: 

2-State HMM 0.0013 0.1117 0.1218 

(0.0 0 01) (0.0074) (0.0071) 

3-State HMM 0.0016 0.1117 0.1225 

(0.0 0 02) (0.0074) (0.0071) 

Ratings & macro covariates: 

2-State HMM 0.0314 0.0421 0.0749 

(0.0060) (0.0071) (0.0122) 

3-State HMM 0.0315 0.0421 0.0749 

(0.0060) (0.0071) (0.0122) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that the estimated default correlation increases with the 

24 Confirming this intuition, we find a positive correlation among the 

three components, consistent with decreased default correlation esti- 

mates when the states of the world and macro covariates are not jointly 

drawn. Thus, modeling the factors independently should understate the 

correlated default risk, producing a lower bound. 
25 Note, we calibrate the model such that the 5-year expected default 

probability matches the average default probability of collateral in our 

sample. 
increases relative to either individual component of default

risk and is 0.1019 using the two-state HMM and 0.1016

with the three-state model. 

The second class of models incorporates a set of macro-

explanatory variables able to explain firm default risk. The

inclusion of these factors increases the default correlation

due to observables to between 0.0397 for the two-state

HMM and 0.0412 under the three-state HMM. As expected,

the addition of more observable covariates decreases the

role played by unmodeled risk, resulting in a default cor-

relation due to frailty alone of 0.0335. Interestingly, when

considering the combined effect due to changes in observ-

ables and frailty, the correlated default risk falls between

0.0778 (two-state HMM) and 0.0791 (three-state HMM),

estimates which fall short of the models only incorporating

information in rating change co-movements and frailty. 

However, we view these default correlation estimates

as a lower bound on the true values. In our estimation

procedure, we independently draw states of the world, re-

alizations of the macro covariates, and frailty paths for

tractability. A positive correlation in these factors driving
default would lead to increased loadings on the included

variables if a subset of the variables was omitted (e.g.,

omitted-variable bias). This bias in coefficients would par-

tially account for the positive correlation between the in-

cluded and omitted variables. However, the inclusion of all

the variables combined with a failure to model the positive

correlation between the factors in the simulation would re-

sult in a downward bias in the estimated default correla-

tion. 24 

To gauge the impact of information revealed through

the financial crisis, we re-estimate our model using the

full sample. Panel B reports default correlations when us-

ing parameter estimates from the sample ending in De-

cember 2012 to simulate default. The average pairwise de-

fault correlation for the ratings-based models with frailty

is roughly 0.125, or 25% larger relative to their pre-crisis

sample counterparts. Such a change in estimated default

correlations may appear small relative to the severity of

the recent financial crisis. However, recall that the frailty

paths illustrated in Fig. 3 exhibited a considerable amount

of variation prior to 2007, first decreasing from 1988 to

1995, then dramatically increasing from 1997 to 2002 be-

fore again decreasing through 2006. Thus, it is plausi-

ble that default correlations which incorporate frailty es-

timates based on pre-crisis data do not differ substantially

from those estimated over the full sample. 

Overall, these findings suggest that default correlations

due to co-movement in observable risk factors and model

frailty can add considerable thickness to the tails of CBO

and CLO collateral pool losses. 

5.4. Default correlations across asset maturities 

As mentioned in Section 2.1 , correlations based on re-

alizations of default are also a function of the underlying

assets’ default probabilities. This implies that these default

correlations are also influenced by the maturity of the un-

derlying assets when keeping collateral quality constant. 

To illustrate this, consider the following scenario. Sup-

pose that two assets are exposed to a risk factor, x t , which

is the sole determinant of their default intensity λt =
e x t . Additionally, assume that x t follows a random walk

with a standard deviation of monthly innovations equal to

our full-sample parameter estimates, σ = 0 . 203 . Using this

simple framework, we estimate the correlation of realized

defaults between two assets for 10 0,0 0 0 draws of the pro-

cess x for maturity values that fall within the 5th and 95th

percentiles of WAMs used by credit rating agencies for our

sample of corporate-backed CDOs. 25 Fig. 4 plots how the

resulting estimate of default correlation varies across the

range of weighted-average maturities. The figure illustrates
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Fig. 4. WAM dependent default correlations. This figure plots the default correlation between two assets when exposed to a common log-normal default 

intensity which is time varying with a standard deviation of monthly innovations of 0.203. The model is calibrated such that the 5-year expected default 

probability matches the average default probability of collateral in our sample. Reported is the estimated default correlation for asset maturities ranging 

from 4.5 to 7.5 years, approximately equal to the 5th and 95th percentiles of the deal WAMs in our sample, respectively. Dashed lines indicate 95% 

confidence bands, generated from 100 bootstrapped simulations. 

26 The average WAMs for the terciles are 4.9 years, 5.6 years, and 7.27 

years. The specific cutoffs are reported in the table header. 
27 This is partly explained by the methodology used by Moody’s to cap- 

ture correlation in collateral defaults, which is based on the pool’s indus- 

try concentration but not the maturity of the assets or simulated realiza- 
maturity of the assets over the range of WAMs common 

in our sample. This confirms that correlations attenuate 

over shorter horizons. This conditional dependence raises 

the concern that our methodology may have low power 

(high Type II error) to detect a difference relative to rat- 

ing agency assumptions for CLOs with a short WAM. As a 

diagnostic test of our methodology’s power, we repeat the 

estimation procedure 100 times and plot the 95% confi- 

dence interval for these estimates (dashed lines). If our test 

lacked precision, with little power to distinguish between 

differing default correlation values, the resulting estimates 

would demonstrate a wide range of values. In contrast, the 

estimated default correlation exhibits relatively tight confi- 

dence bands, suggesting our test possesses sufficient power 

to detect differences in default correlation estimates. 

In addition, the need to estimate model parameters 

which are measured with error raises the concern of a 

Type I error, in which we falsely reject the null that the 

difference between our estimated default correlation and 

rating agency assumptions is zero. To alleviate this con- 

cern, throughout the paper we report bootstrapped stan- 

dard errors for each parameter estimate and default corre- 

lation estimate to ensure the differences between our esti- 

mates and those of the rating agencies are not being driven 

by misestimated parameters. 

Nonetheless, given the effect of asset maturity on de- 

fault correlation estimates, we now re-examine the sensi- 

tivity of our previous results to the WAM of the underlying 

collateral pool. Recall that we estimate the average pair- 
wise default correlation for each CDO collateral pool using 

the deal’s observed WAM. This same WAM is used by rat- 

ing agencies when evaluating the pool’s collateral risk, al- 

lowing us to effectively com pare our estimate with that of 

the CRAs within a matched sample. Thus, we would expect 

that both the rating agencies’ assumed default correlations 

as well as our estimates increase with WAM. 

For this reason, Table 5 partitions our sample of CDOs 

into terciles based on the collateral pool WAMs and reports 

the average default correlation estimate for each subset. 26 

The table indicates that the default correlation assumed by 

S&P is monotonically increasing in the collateral’s WAM, 

increasing from 0.0071 to 0.0128. In contrast, Moody’s as- 

sumed default correlations only exhibit an increase in the 

subset of deals with long maturities. 27 Furthermore, the 

estimated default correlation from each of the modeling 

frameworks exhibits a monotonically increasing relation. 

The estimated values are generally larger than S&P’s as- 

sumed default correlations by a factor of five. This set of 

results confirms the conditional nature of default correla- 

tions with respect to the underlying assets’ default proba- 

bilities and maturities while highlighting the robustness of 
tions of default. 
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Table 5 

Corporate bond default correlations by WAM. 

This table reports the average pairwise default correlation for a sample 

of corporate-backed CDOs issued from 20 0 0 to 20 07. Reported are the 

results obtained when estimating the model which considered both co- 

movement in modeled risk factors and systematic unmodeled risk using 

data from January 1986 to December 2006. The primary difference be- 

tween this table and Panel A of Table 4 is that the sample has been split 

into terciles based on the underlying collateral’s weighted-average matu- 

rity to compare estimates within maturity bins. The WAM for CDOs in the 

Short bin range from 3.5 to 5.38 years, in the Medium bin range from 5.39 

to 5.93 years, and in the Long bin from 5.94 to 12.4 years. These maturi- 

ties are obtained from the stated maturities issued by S&P. Bootstrapped 

standard errors are reported in parentheses. 

Deal WAM 

Methodology Short Medium Long 

CRA assumptions: 

S&P default correlation 0.0071 0.0092 0.0128 

Moody’s default correlation 0.0104 0.0095 0.0122 

Ratings only: 

2-State HMM 0.0822 0.1034 0.1201 

(0.0099) (0.0109) (0.0111) 

3-State HMM 0.0822 0.1031 0.1197 

(0.0091) (0.0105) (0.0111) 

Ratings & macro covariates: 

2-State HMM 0.0644 0.0798 0.0891 

(0.0155) (0.0157) (0.0157) 

3-State HMM 0.0656 0.0811 0.0906 

(0.0156) (0.0157) (0.0156) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

extreme collateral default risk relative to S&P. 

28 Additionally, the HHI of a perfectly diversified collateral pool of the 

34 industries is 0.03. 
29 The average HHI of credit ratings is 0.49 when using the full credit 

rating scale ( BBB+, BBB , ...). 
our findings. These results also highlight the importance of

our matched-sample approach which uses the same deal-

specific weighted-average maturities that the rating agen-

cies assume. 

6. Implications for current ratings 

Default correlations are pivotal in the rating of struc-

tured finance products that make up a large part of credit

rating business, and rating agencies have considerable data

and resources at their disposal. In the aftermath of the

financial crisis and the substantial negative publicity re-

ceived, rating agencies made a considerable number of

press releases regarding methodological adjustments to

make their modeling more robust. The comparison of rat-

ing agency assumptions after the crisis and our default cor-

relation estimates over the full sample gives a sense of any

additional risk possibly absent from the evaluation of post-

crisis structured finance products. 

Using surveillance reports, we obtain data for 136 CLOs

from S&P issued from June 2011 to June 2014. The AAA

tranches make up 61.9% of the deal on average, while

tranches AA and higher are 72.9%. The average collat-

eral pool in the sample is made up of 179 obligors, sug-

gesting there is potential for considerable diversification.

Panel A of Fig. 5 reports the total par amount of corporate

bonds and loans by industry which make up the collateral

pools. The panel indicates that there is significantly more

corporate debt from the ‘Healthcare’ sector ($16.8B) than

that of the second largest industry, ‘Electronics’ ($10.7B).

Given this over-concentration in the healthcare industry,

we next examine the industry concentration within each

CLO. Specifically, for each deal we compute the Herfind-
ahl index (HHI) of the percent of the collateral pool repre-

sented by each industry classification. Panel B of Fig. 5 re-

ports the histogram of HHIs for the CLOs in our sample.

The majority of the CLOs appear to be relatively diverse

with an HHI below 0.07. In contrast, the HHI for the total

par amount by industry from Panel A is 0.05, suggesting

the overall sample is fairly representative of each CLOs in-

dustry concentration. 28 Finally, we examine the homogene-

ity in credit quality for each collateral pool. For each deal,

we compute the HHI of the percent of the collateral pool

made up of each broad credit rating ( BBB, BB , ...). Panel C

reports the histogram of credit rating HHIs for the CLOs in

our sample. The panel suggests that the collateral in each

pool is relatively homogeneous; the majority of the CLOs

have a rating HHI greater than 0.50. 29 The most common

ratings are B, BB, and CCC with 75.2%, 22.1%, and 1.62% of

collateral, respectively. 

For this sample S&P assumes an average default cor-

relation of 0.033 with a range of 0.012 to 0.060. Thus,

S&P has increased their correlation estimates in the af-

termath of the crisis. Panel A of Table 6 reports the aver-

age default correlation estimated with our approach out-

lined in Section 5.3 above. The estimated default correla-

tions generated across our methodologies are three to four

times greater, ranging from 0.103 when modeling default

risk using a combination of macroeconomic covariates and

a two-state HMM to 0.124 when modeling ratings with

the three-state HMM but excluding macro covariates. The

lower assumptions being used by credit rating agencies in-

dicate that tranches given AAA ratings by rating agencies

are likely exposed to more risk than their current credit

rating merits. 

However, this in itself does not give a sense of the eco-

nomic magnitude embedded in the differential between

our estimates of default correlation and those used by

rating agencies. S&P uses the scenario default rate (SDR),

which is equivalent to a value-at-risk, to measure the

losses in the tail of the distribution. 

Fig. 6 reports the scatter-plot of S&P’s AAA SDR levels

relative to SDR estimates under our modeling framework.

Reported for convenience is the 45-degree line, which seg-

ments the sample into deals in which our methodology

yields a higher level of collateral risk (above the line),

and deals in which S&P estimates the collateral as being

riskier (below the line). The figure reports the estimated

SDR when considering the risk of rating co-movements,

modeled with a two-state HMM, and model frailty. While

there is a relationship between the AAA SDR reported by

S&P and our estimates (correlation of 0.356), every obser-

vation lies above the 45-degree line. Confidence intervals

are constructed from bootstrapped parameter estimates in

a similar fashion to the standard errors of Table 6 . This in-

dicates that for every CDO considered, evaluating the col-

lateral under our methodology leads to a higher level of
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Fig. 5. CBO underlying collateral composition by industry and rating. This figure reports the total par amount of underlying collateral by industry (Panel 

A), the industry concentration by deal (Panel B), and rating concentration by deal (Panel C) for a sample of 136 CDOs recently issued. Panel A plots the 

total par amount by industry, as classified in the surveillance reports. Panel B plots the histogram of Herfindahl-Hirschman Indices (HHI) with respect to 

the industry composition making up the underlying collateral pool for each CDO in the sample. Panel C plots the histogram of HHI with respect to the 

rating composition making up the underlying collateral pool for each CDO in the sample. The sample consists of collateralized loan obligations (CLOs) and 

collateralized bond obligations (CBOs) issued from June 2011 to December 2013. 
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Table 6 

Post-crisis portfolio default risk estimates. 

This table reports the average pairwise default correlation (Panel A) and 

scenario default rate (Panel B) for a sample of 136 corporate-backed CDOs 

issued from 2011 to 2014. Modeled risk factors denotes the default correla- 

tion resulting from co-movement in observable risk factors considered in 

each model specification. Unmodeled risk denotes the default correlation 

resulting from systematic, unmodeled risk. Both denotes the default cor- 

relation when considering both co-movement in modeled risk factors and 

systematic unmodeled risk. The default correlation for each deal is cal- 

culated as the value-weighted pairwise default correlation between the 

underlying assets. Panel B reports summary statistics for AAA SDRs esti- 

mated by S&P, under our methodology when modeling rating changes and 

frailty ( Ratings only ) and under our methodology when modeling rating 

changes, macroeconomic covariates, and model frailty ( Ratings & macro 

covariates ). Bootstrapped standard errors are reported in parentheses. 

Panel A: pairwise default correlations 

Modeled risk Unmodeled 

Methodology factors risk Both 

Ratings only: 

2-State HMM 0.0014 0.1126 0.1236 

(0.0 0 02) (0.0109) (0.0102) 

3-State HMM 0.0017 0.1126 0.1240 

(0.0 0 03) (0.0109) (0.0102) 

Ratings & macro covariates: 

2-State HMM 0.0317 0.0420 0.1030 

(0.0083) (0.0107) (0.0153) 

3-State HMM 0.0319 0.0420 0.1027 

(0.0083) (0.0107) (0.0155) 

Panel B: portfolio SDRs 

Methodology Mean Median Std. dev. 

CRA assumptions: 

S&P’s SDRs 0.661 0.660 0.028 

Ratings only: 

2-State HMM 0.835 0.841 0.030 

(0.022) (0.022) 

3-State HMM 0.833 0.836 0.030 

(0.022) (0.023) 

Ratings & macro covariates: 

2-State HMM 0.698 0.703 0.032 

(0.029) (0.030) 

3-State HMM 0.701 0.704 0.030 

(0.030) (0.030) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30 http://www.justice.gov/file/338706/download 
31 The average CLO has 72.6% AAA in the sample of Griffin and Tang 

(2012) . 
Panel B of Table 6 summarizes the results of the es-

timated SDRs under each model we consider along with

those assumed by S&P. The average SDR reported by S&P

for the sample is 66.1% (median of 66.0%). Recall that the

model which includes macro covariates is not able to ac-

count for a positive correlation between the default in-

tensity implied by macro covariates and frailty, whereas

the correlation between these two risk factors is 0.151 in

our sample. Thus, we think that the model specification

with rating co-movement and frailty is the most appropri-

ate. The average SDR under models which consider only

rating co-movement and frailty range from 83.3 to 83.5%;

amounting to at least a 17.2% movement in SDR or a 26%

(83.3/66.1 - 1) relative increase in the credit risk. 

7. Economic importance and relevance 

A final point of comparison should be made. While

credit rating agencies like S&P separate the modeling of

risk into credit and cash-flow components, the correlation
assumptions we are examining only affect the credit risk

of the CLOs. Griffin and Tang (2012) compare the differ-

ence between the amount of AAA issued and the amount

implied from S&P’s credit risk model (1-SDR) as a measure

of the aggressiveness of internal cash-flow modeling. 

Griffin, Nickerson and Tang (2013) document that both

Moody’s and S&P respond to competitive pressure result-

ing from the other’s favorable credit risk modeling by issu-

ing positive cash-flow adjustments. It is possible that the

use of higher default correlation assumptions could be off-

set by larger cash-flow adjustments. However, the increase

in SDR of 17% that we document here due to a more con-

servative correlation assumption is much larger than the

adjustments in response to competitive pressure of 4–8%

documented in Griffin, Nickerson and Tang (2013) . Thus,

a rating agency may find it difficult to relax its cash-flow

modeling criteria by enough to offset the incorporation of

frailty in its correlation assumptions. Hence, it is possi-

ble that rating agencies have not adopted more aggressive

correlation assumptions due to concerns regarding mar-

ket share. Such concerns are consistent with prior find-

ings regarding business considerations modeling choices.

For example, the Statement of Facts released in the Depart-

ment of Justice (DOJ) settlement with S&P states that S&P

began testing a default matrix proposed by the heads of

groups, “in part based upon business decisions, and con-

siderations.”30 Additionally, Moody’s (2004) considers two

methods for calculating default correlations but ultimately

chooses the method yielding the lower estimates. 

Another possibility is that cash-flow modeling has be-

come more conservative post-crisis to the point of offset-

ting the increase in SDR under larger default correlations.

This does not seem to be the case. For our sample from

2011 to 2014, the average CLO has 61.9% of the deal rated

AAA, whereas S&P’s credit risk model alone generates only

33.9%. 31 Thus, the AAA amount issued is 28% above the

amount implied from S&P’s credit risk model. This is con-

siderably higher than the 16% for CLOs found by Griffin and

Tang (2012) from 1997 to 2007. Unless there has been a

substantial change in the waterfall structure of CLOs, this

could indicate that S&P is currently using even more ag-

gressive cash-flow modeling practices and provides even

more caution regarding structured finance CLOs. 

While our findings suggest that rating agencies’ mod-

els may be understating senior tranche credit risk, it is in-

teresting to observe whether market prices reflect higher

risk or are pricing AAA CDOs similar to corporate AAA

debt. Fig. 7 plots the average quarterly spread of CBO AAA

tranche yields above the London Interbank Offered Rate

(LIBOR). The figure indicates that spreads narrowed con-

siderably from 2004 to 2007 at the same time that the

estimated frailty path was decreasing and there were few

defaults. Spreads hovered around ten basis points in 2006,

while the average yield spread from 2011 through the first

quarter of 2014 is between 100 and 150 basis points. These

yields suggest that the marginal post-crisis investors gener-

http://www.justice.gov/file/338706/download
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Fig. 6. Comparison of recent AAA scenario default rates. This figure reports the scatter-plot of AAA scenario default rates (SDRs) used by S&P ( x -axis) and 

calculated from our methodology ( y -axis). The figure illustrates the estimated SDR under our methodology when modeling only rating changes under a 

two-state HMM and including model frailty. Dashed line segments denote 95% confidence intervals estimated from bootstrapped parameter estimates. The 

sample consists of collateralized loan obligations (CLOs) and collateralized bond obligations (CBOs) issued from June 2011 to December 2013. 
ally believe AAA CLOs’ risk to be considerably greater than 

their rating. This lends additional credence to our conclu- 

sion that ‘2.0’ ratings are still too aggressive. 

One might be tempted to conclude that inaccurate 

ratings are unimportant as long as the marginal price 

incorporates additional credit risk. Yet, there are some 

problems with this line of reasoning. First, the marginal 

investor could still be an investor who does not understand 

the risk and misprices the security. 32 Second, accurate rat- 

ings are still important to regulators and third-party 

investors who, for example, might invest in a AAA money 

market fund and rely on the credit ratings. Third, inaccu- 

rate ratings can facilitate the extent to which institutional 

investors “reach for yield” ( Becker and Ivashina, 2015 ) or 

cause excessive risk-taking ( Becker and Opp, 2013 ). 

8. Conclusion 

A commonly assumed lesson from the financial crisis is 

that default correlations were not well understood. Despite 

this period of massive default, almost no academic work 

has been done to understand how we should assess default 

correlations for structured products. Our findings point to 

the importance of incorporating default risk due to both 
32 More extensive modeling with more detailed data on particular deals 

would need to be performed to determine if the 100–150% basis points is 

sufficient for the additional frailty risk. 
systematic changes in observable risk factors and frailty. 

Even when estimating our model using pre-crisis data, the 

correlations used by rating agencies for CLOs were con- 

siderably lower than those we obtain. Thus, the low de- 

fault correlations used prior to the crisis are not solely 

attributable to a lack of crises in the data, but are also 

a result of methodological choices. Recent CLO issuances 

reinforce this conclusion. Post-crisis CLO correlation esti- 

mates do not appear to incorporate frailty and appear to 

be structured too aggressively. If frailty were incorporated, 

our methodology suggests that credit risk on AAA tranches 

may be understated by 26%. 

Our default correlation estimates that include the finan- 

cial crisis indicate substantial diversification benefits across 

structured finance instruments, hence indicating a role for 

structured finance in the future. Nevertheless, we must 

also temper this enthusiasm by noting that credit cycles 

can create waves of similar financial instruments in the 

precise time periods where frailty correlations could be in- 

creased through amplification mechanisms such as those 

noted by Brunnermeier (2009) . Thus, while our findings in- 

dicate that the waves of newly issued structured products 

may not be as creditworthy as their ratings suggest, there 

are potentially other reasons for caution as well. Future 

work should focus on further understanding default corre- 

lations as well as other aspects of structured finance mod- 

eling, such as incorporating parameter uncertainty. With- 

out such research and more transparency in both detailed 
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Fig. 7. Estimated frailty path and CDO yield spreads. This figure illustrates the conditional mean of the frailty path from a hazard model fitted using the 

firm’s credit rating lagged by one month (solid line) and the mean yield spread by quarter (diamonds). The frailty path has been scaled by the appropriate 

scaling parameter, η. Reported is the average yield spread for the junior-most tranche rated AAA at issuance across all CLOs and CBOs by quarter. A one 

standard deviation range is denoted by the dashed line segments. 
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data and assumptions by credit rating agencies, structured

finance ratings should be viewed cautiously. 

Appendix A 

This appendix details the closed-form solution which

maps S&P and Moody’s proprietary correlation metric to

default correlation. A previous version of these derivations

can be found in Griffin, Nickerson and Tang (2013) . Both

derivations are based on the variance of the underlying

collateral pool’s realized default distribution, σ 2 
p . This vari-

ance can be decomposed into asset default variances and

asset-pair covariances as follows: 

σ 2 
p = 

N ∑ 

i =1 

w 

2 
i σ

2 
i + 2 ×

N ∑ 

i =1 

N ∑ 

j= i +1 

w i w j σi j 

= 

N ∑ 

i =1 

w 

2 
i σ

2 
i + 2 ×

N ∑ 

i =1 

N ∑ 

j= i +1 

w i w j 

√ 

σ 2 
i 
σ 2 

j 
ρi j (8)

where σ 2 
i 

is the variance of the realization of default for

asset i and w i is the percentage of asset i ’s size relative to

the total asset pool. Assuming assets are of equal size w ,

are of the same collateral quality and thus have a common

variance of default σ 2 , and share a common pairwise cor-
relation ρ , the equation simplifies to: 

σ 2 
p = 

1 

N 

σ 2 + 

N − 1 

N 

σ 2 ρ = 

[ 
1 

N 

+ 

N − 1 

N 

ρ
] 
σ 2 . (9)

Moody’s proprietary metric, the Diversity Score, is defined

as the number of independent assets the collateral pool

can be represented by. Thus, for a pool with a diversity

score of DS : 

σ 2 
p = 

1 

DS 
σ 2 . (10)

Therefore, to match the second moment the average pair-

wise correlation must satisfy the following: 

1 

DS 
σ 2 = 

[ 
1 

N 

+ 

N − 1 

N 

ρ
] 
σ 2 

ρ = 

N − DS 

DS ( N − 1 ) 
. 

(11)

In contrast, S&P’s correlation metric, CM , is defined as

the ratio of the standard deviation of the portfolio default

distribution with correlation divided by the standard de-

viation of the distribution when ignoring correlation be-

tween asset defaults: 

M 

2 = 

1 
N 
σ 2 + 

N−1 
N 

σ 2 ρ
1 
N 
σ 2 

ρ = 

CM 

2 − 1 

. (12)

N − 1 
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Appendix B 

This appendix provides a detailed example of S&P’s 

computation of the Scenario Default Rate (SDR) for a col- 

lateral pool, which is equivalent to the value-at-risk of the 

collateral pool’s default distribution. Suppose the collateral 

pool of a CLO is made up of 100 assets, with identical de- 

fault probabilities p i = 0 . 15 ∀ i and relative sizes s i = 

1 
100 . 

For simplicity, assume the default risk of the assets is un- 

correlated. Thus, the probability that x percent of the as- 

sets in the pool default follows a binomial distribution: 

P r 

( 

100 ∑ 

i =1 

d i s i = x 

) 

= 

(
100 

x 

)
p x (1 − p) 100 −x (13) 

where d i is an indicator which equals one if asset i de- 

faults, and zero otherwise. In contrast, when default risk of 

the underlying assets is correlated S&P estimates the prob- 

ability distribution of (14) using a Gaussian Copula Monte 

Carlo simulation. 

In a generic sense, the value-at-risk for a probabil- 

ity α, VaR α , is the default percentage threshold such that 

P r( 
∑ 100 

i =1 d i s i ≥ V aR α) = α. Thus, to compute the SDR what 

remains is the choice of α. For this, S&P references a table 

of expected default probabilities. For instance, to estimate 

the AAA SDR for a CDO with a weighted-average maturity 

of five years, α is set to S&P’s 5-year AAA expected default 

rate (0.061%). Therefore, in this example the AAA SDR for 

a CDO with a 5-year WAM is SDR AAA ≈ 34%. 33 

Appendix C 

This appendix outlines the estimation of the two-state 

hidden Markov model (HMM) of credit rating changes 

using the Baum-Welch algorithm. We begin by defining 

the sequence of observed rating changes as { O 1 , . . . , O T } , 
where O t is the observed set of rating changes at time 

t . We also denote the sequence of hidden states as 

{ S 1 , . . . , S T } where S t ∈ {1: good , 2: bad } is the state at time

t , and the good state of the world is index by 1. Finally, 

credit rating changes at time t follow the state-dependent 

transition matrix �( S t ) ∈ { �(1): good, �(2): bad }. 

We assume that the hidden state evolves over time ac- 

cording to the two-state transition matrix, A , and denote 

the distribution of the initial state by the vector Q : 

a i j = P ( S t = j| S t−1 = i ) 

q i = P ( S 1 = i ) . (14) 

The probability of observing the set of rating changes O t 

given the economy is in state k is proportional to: 

b k (O t ) = P (O t | S t = k ) = P (O t | �(k )) = 

N ∏ 

i =1 

N ∏ 

j=1 

π(k ) 
n i j (t) 

i j 

(15) 

where N is the number of possible credit ratings, n ij ( t ) is 

the number of firms transitioning from rating i to rating j 
33 Given the discrete nature of the default distribution generated from 

the Monte Carlo simulations, S&P uses linear interpolation to compute 

the SDR. 
at time t , and π ( k ) ij is the probability of transitioning from

rating i to rating j according to the rating transition matrix 

�( k ). To estimate the full parameter set � = { A, Q, �(·) }
we implement the Baum-Welch algorithm. For this, we de- 

fine the forward probability with the following recursive 

relationship: 

αi (t) = P ( O 1 , . . . , O t , S t = i | �) 

αi (1) = q i · b i (O 1 ) 

α j (t + 1) = 

2 ∑ 

i =1 

(
αi (t) · a i j 

)
· b j (O t+1 ) . (16) 

Additionally, we define the backward probability with the 

following recursive relationship: 

βi (t) = P ( O t+1 , . . . , O T | S t = i, �) 

βi (T ) = 1 

βi (t) = 

2 ∑ 

j=1 

(
a i j · b j (O t+1 ) · β j (t + 1) 

)
. (17) 

The probability of being in state i at time t given 

{ O 1 , . . . , O T } becomes: 

γi (t) = 

αi (t) · βi (t) ∑ 2 
j=1 α j (t) · β j (t) 

. (18) 

Thus, γ 1 ( t ) represents the probability of being in the good 

state of the world at time t given the full information of all 

rating changes over the entire sample period. Finally, the 

probability of transitioning from state i at time t to state j 

at time t + 1 is: 

ξi j (t) = 

γi (t) · a i j · b j (O t+1 ) · β j (t + 1) 

βi ( t ) 
. (19) 

Given these definitions, we now proceed to the procedure 

used to estimate ˆ �, such that: 

ˆ � = arg max 
�

P ( O 1 , . . . , O T | �) . (20) 

We begin by initializing the parameters with an initial 

guess, �(0) . We set the transition matrix, A , and distribu- 

tion of the initial state, Q , to the following: 

• A 

(0) : a (0) 
i j 

= 0 . 5 ∀ i, j

• Q 

(0) : q (0) 
i 

= 0 . 5 ∀ i 

In addition, we must also begin with an initial guess 

for the two state-dependent transition matrices. To do this, 

we first compute the average credit rating across all firms 

for each period. Next, we assign each period whose aver- 

age credit rating is greater than the median credit rating 

across all periods to the good state and assign the remain- 

der of the periods to the bad state. Finally, we use this clas- 

sification to assign weights to each period’s observed rat- 

ing changes from which we estimate the state-dependent 

transition matrices. Specifically, let r be the ordinal credit 

rating for a firm where AAA corresponds to one. Thus, we 

initialize the transition matrices to the following: 



J. Nickerson, J.M. Griffin / Journal of Financial Economics 125 (2017) 454–474 473 

 . 1) ] ·
 

)(0 . 1)

 . 9) ] ·
 

)(0 . 9)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ π(1) (0) 
i j 

= 

∑ T 
t=1 [ 1( ̄r t < r median )(0 . 9) + 1( ̄r t ≥ r median )(0∑ T 

t=1 

∑ N 
k =1 [ 1( ̄r t < r median )(0 . 9) + 1( ̄r t ≥ r median

ˆ π(2) (0) 
i j 

= 

∑ T 
t=1 [ 1( ̄r t < r median )(0 . 1) + 1( ̄r t ≥ r median )(0∑ T 

t=1 

∑ N 
k =1 [ 1( ̄r t < r median )(0 . 1) + 1( ̄r t ≥ r median

where n ij ( t ) is the number of firms that transitioned from

rating i to rating j at time t . 

Given this initialization of �(0) , we calculate α(0) 
i 

(·) ,
β(0) 

i 
(·) , γ (0) 

i 
(·) , and ξ (0) 

i j 
(·) . The parameter estimates are

then updated in the following iterative fashion: 

• ˆ A 

(x +1) : ˆ a (x +1) 
i j 

= 

∑ T −1 
t=1 ξ

(x ) 
i j 

(t) ∑ T −1 
t=1 γ

(x ) 
i 

(t) 

• ˆ Q 

(x +1) : ˆ q (x +1) 
i 

= γ (x ) 
i 

(1) 

• ˆ �(k ) x +1 : ˆ π(k ) x +1 
i j 

= 

∑ T −1 
t=1 γ

(x ) 
k 

(t) · n i j (t) ∑ T −1 
t=1 

∑ N 
l=1 γ

(x ) 
k 

( t) · n il (t) 

This procedure is repeated until the values converge,

yielding ˆ �. 

Appendix D 

This appendix outlines the time-series estimation of

macroeconomic covariates used to predict the default risk

of firms. We opt to model each macro variable using a

first-order auto-regressive structure. 

Specifically, we model the civilian unemployment rate

U t and trailing one-year market return S t at time t as inde-

pendent AR(1) processes: (
U t 1 

S t 1 

)
= 

(
αU 

αS 

)
+ 

(
ρU 0 

0 ρS 

)(
U t 

S t 

)
+ 

(
σU 0 

0 σS 

)
ε t+1 

(22)

where ε is a two-dimensional vector of independent stan-

dard random normal variables. Over the full sample, we

obtain the following parameter estimate: (
ˆ αU 

ˆ αS 

)
= 

(
0 . 0303 

0 . 0970 

) (
ˆ ρU 

ˆ ρS 

)
= 

(
0 . 9942 

0 . 9130 

)
(

ˆ σU 

ˆ σS 

)
= 

(
0 . 1572 

0 . 0696 

)
. (23)

For the 3-month interest rate and AAA corporate spread

over the 10-year rate, we jointly model the three interest

rates using a first-order vector auto-regression. We be-

gin by including all lagged coefficients and sequentially

exclude statistically insignificantly lagged values until no

insignificant values remain. The final model specification

is as follows: 

r t+1 = 

⎛ 

⎜ ⎝ 

r 3 m 

t+1 

r 10 y 
t+1 

r corp 
t+1 

⎞ 

⎟ ⎠ 

+ 

( 

α3 m 

α10 y 

αcorp 

) 

+ 

( 

ϕ 11 ϕ 12 0 

ϕ 21 ϕ 21 0 

0 ϕ 32 ϕ 33 

) 

r t + L ηt+1 

LL T = � (24)

where ηt+1 is a three-dimensional independent standard

random normal variable and L is a 3 × 3 lower triangular
n i j (t) 

 ] · n ik (t) 

n i j (t) 

 ] · n ik (t) 
(21) 

matrix so that LL T is the covariance matrix � of inno-

vations across the system of time-series. The full sample

yields the following parameter estimates: ( 

ˆ α3 m 

ˆ α10 y 

ˆ αcorp 

) 

= 

( −0 . 0728 

0 . 0243 

0 . 1795 

) 

ˆ ϕ = 

( 

0 . 9785 0 . 0237 0 

−0 . 0015 0 . 9928 0 

0 0 . 0585 0 . 9240 

) 

ˆ � = 

( 

0 . 0359 0 0 

0 . 0404 0 . 0594 0 

0 . 0081 0 . 0200 0 . 0376 

) 

. (25)

Note: All interest rates and the civilian unemployment rate

are expressed in percentage terms before performing the

estimation procedure. 
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